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1 Introduction 
 
Lambert ([1],[2],[3],[4]) contends that situation 
assessment is about assessing situations, with situations as 
fragments of the world represented by a set of assertions. 
Consequently the transition from object assessments to 
situation assessments requires a move from numeric to 
symbolic representations, and so, when contemplating 
machine based situation assessments, one confronts the 
question: “What symbols should be used and how do 
those symbols acquire meaning?” - termed “the Semantic 
Challenge” for Information Fusion by Lambert ([4]). The 
solution proposed in [4] was to engage “… formal 
theories that define the meaning of selected primitive 
symbols …” using a 5 tier inheritance structure of formal 
theories with suggested primitives, which is reproduced 
in Figure 1. 
 
Social:  group, ally, enemy, neutral, own, possess, 

invite, offer, accept, authorise, allow. 
Intentional: individual, routine, learnt, achieve, 

perform, succeed, fail, intend, desire, 
belief, expect, anticipate, sense, inform, 
effect, approve, disapprove, prefer. 

Functional: sense, move, strike, attach, inform, 
operational, disrupt, neutralise, destroy. 

Physical:  land, sea, air, outer_space, incline, decline, 
number, temperature, weight, energy. 

Metaphysical: exist, fragment, identity, time, before, 
space, connect, distance, area, volume, 
angle. 

Figure 1. Hierarchy of semantic primitives. 

Nowak and Lambert ([5]) subsequently used Model 
Theory ([6]) to: (a) explain how formal theories can 
define the meaning of formal language symbols; and (b) 
explain how ontologies as description logic formal 
theories can define the meaning of symbols, before 
demonstrating two implemented applications in which an 
ATTITUDE agent ([7]) engaged an ontology to 
semantically retrieve and reason with information. 

 
The description logic approach restricts the expressivity 
of the formal language in order to guarantee the 
decidability of formal theories developed with that formal 
language. An alternative is to use logics of greater 
expressivity, but to consider the decidability of the formal 
theories developed with that formal language. In contrast 
to [5], this paper explores the latter approach. 
 
The author suggests that in developing any computational 
semantic formal theory, three stages are required: (a) 
philosophical, in which the conceptualisation of the 
domain of discourse is specified; (b) mathematical, in 
which the formal structure of that philosophy is specified; 
and (c) computational, in which a computational 
implementation of that mathematical theory is specified. 
The remainder of this paper presents these three stages of 
development, choosing the concept of existence from the 
metaphysical tier in Figure 1 to illustrate the approach. 
Section 2 looks at the concept of existence; section 3 
presents a formal theory of that conceptualisation; and 
section 4 delivers a computational implementation for that 
theory. Section 5 concludes by using category theory to 
show how the theory of existence could be combined 
within a hierarchy of formal theories to provide a 
computational metaphysics within the semantic 
framework of Figure 1. 

2 Philosophy of Existence 
 
The philosophy of existence outlined herein considers the 
nature of: metaphysics; nominalism; processes; and 
language. 
 
2.1 Metaphysics 
 
The term “metaphysics” derives from works by Aristotle 
from around 350 B.C. ([8]). Aristotle’s understanding 
centred on understanding things, and he asserted that 
there were different kinds of things, each of which could 
be understood on the basis of the principles governing 
that kind. In seeking to uncover the underlying principles 
of each kind, the inquirer derives a science or systematic 
body of knowledge. As things of one kind may also be 
things of another kind, these sciences accommodate 
alternative perspectives toward the same things, and to 
that end, in his "Posterior Analytics" Aristotle defines an 
inheritance ordering over the sciences. Aristotle's 
ordering of the sciences and his aversion for the infinite 
were suggestive of a foundational science. Aristotle 
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proffered the science of being, or metaphysics, as 
foundational, and of the different senses of being, 
nominated substance as fundamental. Substances are the 
individual things that exist. Metaphysics was to provide a 
generic account of all individual existing things, 
irrespective of the classes to which they belonged. 
 
Within metaphysics, substance was studied through the 
roles it supported. One of the four roles concerns form 
and matter. For Aristotle, things are formed matter. 
Matter is the "stuff" of which a thing is composed, the 
characteristic that makes a statue this statue rather than 
that statue. Form is that which determines what a thing is, 
the characteristic that makes a statue, a statue. Form is the 
basis by which reality is individuated, while relying upon 
matter as a mechanism for relating forms. Matter supports 
a hierarchical structure of form but restricts access to 
immediate forms. Thus Aristotle cites earth as the matter 
of wood and wood as the matter of a casket, but earth 
cannot be the matter of a casket. 
 
2.2 Nominalism 
 
In contemplating a formal theory resembling Aristotle’s 
hierarchical world of objects, one might consider set 
theory that, in its various forms, has come to represent 
our understanding of composition. Of these, Zermelo-
Fraenkel Set Theory with the Axiom of Choice (ZFC) 
(e.g. [9]) has, at least mathematically, been the most 
prominent, and ZFC’s Regularity Axiom delivers the sort 
of compositional relationship noted by Aristotle between 
earth, wood and casket. The axioms of ZFC are listed 
below, expressed in terms of the first order formal 
language {∈, =}. 
Extensionality Axiom 
 ∀x ∀y (x = y ⇔ ∀z (z ∈ x ⇔ z ∈ y)). 
Empty Set Axiom 
 ∃x ∀y (¬ (y ∈ x)). 
Unions Axiom 
 ∀x ∃y ∀z (z ∈ y ⇔ ∃w (z ∈ w & w ∈ x)). 
Power Set Axiom 
 ∀x ∃y ∀z (z ∈ y ⇔ ∀w (w ∈ z ⇒ w ∈ x)). 
Infinity Axiom 
 ∃x (∃y (y ∈ x) & ∀y (y ∈ x ⇒ ∃z (y ∈ z & z ∈ x))). 
Regularity Axiom 
 ∀x (∃y (y ∈ x) ⇒  

∃y (y ∈ x & ¬ (∃z (z ∈ y & z ∈ x)))). 
Replacement Axioms 
 ∀x (∀u (u ∈ x ⇒  
∃!v (ξ(u, v))) ⇒ ∃y ∀w (w ∈ y ⇔ ∃t (t ∈ x & ξ(t, w)))), 
for any well formed formula ξ(-, -) with two free 
variables. 
Axiom of Choice 
 ∀x (∀y (y ∈ x ⇒  

(∃z (z ∈ y) &∀u ∀v ((u ∈ x & v ∈ x) ⇒  
∃z ((z ∈ u & z ∈ v) ⇒ u = v)))) 

⇒ ∃w ∀y (y ∈ x ⇒ ∃z (z ∈ y &  
∀t (t ∈ x ⇒ (t ∈ w ⇔ t = z))))). 

The ordinals 0, 1, 2, …, ω, ω+, …, 2ω, … are used to 
generate the universe of the “intended model”, as the ZFC 
axioms allow for: the existence of a zero ordinal 0 = ∅; 

the existence of a successor ordinal α+ = α ∪ {α} for any 
ordinal α  (e.g. 1 = 0+ = ∅ ∪ {∅} = {∅}); the existence 
of limit ordinals where λ is a limit ordinal if it satisfies 
∀α (α∈ λ ⇒ α+ ∈ λ) (e.g. ω = {0, 1, 2, …}). It is a 
relatively simple matter to demonstrate that every well 
ordered set supports a Transfinite Induction Principle and, 
as a consequence, it is possible to recursively define 
functions over these well ordered sets. Since ordinals are 
sets well ordered by ∈, it follows that transfinite 
recursion can be performed over the ordinals. One such 
recursively defined function is the rank function R 
defined by R(0) = 0 = ∅; R(α+) = P(R(α)) for powerset 
P and every ordinal α; R(λ) = ∪α∈λ R(α) for every 
limit ordinal λ > 0. The Regularity Axiom is provably 
equivalent to the statement that for every set x there is an 
ordinal α such that x ∈ R(α). In other words, if something 
is a set then sooner or later it will be generated by the 
rank function. The intended model of set theory then 
becomes the structure <Ran R; ∈> where Ran R = 
{R(α) | α is an ordinal} and ∈ is the “set” which, as a 
relation, well orders the ordinal sets, each of which is 
generated by the rank function. 
 
The first problem with a metaphysics based on ZFC and 
its intended model is the choice of foundation. Sets in the 
intended model are not sets about times, missiles, 
governments and ships. Under the intended model, every 
set is an abstraction from the empty set R(0) = ∅. The 
intended model could be extended with ‘urelements’ by 
expanding the foundation R(0) to include those elements 
of reality which one might wish to consider abstractions 
of. This approach then engenders something like an 
Aristotelian outlook. The set R(0) describes the 
fundamental conception of matter, termed “prime matter” 
by Aristotle, while the abstractions of R(1) from R(0) 
identify the forms the matter of R(0) might assume. The 
abstractions of R(2) from R(1) then detail the forms the 
matter of R(1) might assume. But what then is the prime 
matter foundation R(0)? Aristotle opted for the earth, air, 
fire, and water of Empedocles. 
 
A second problem with a metaphysics based on ZFC and 
its intended model is overpopulation. If HMAS_Adelaide 
is an object in the universe, then so is 
{HMAS_Adelaide}, and {{HMAS_Adelaide}}, and so 
on uncountably, with the Regularity Axiom ensuring that 
each of these sets is distinct. Through the Infinity Axiom 
and the Power Set Axiom in particular, ZFC presides over 
an abstraction explosion to the extent that we can 
intuitively formulate some abstractions which we fully 
intend to be sets, but which, upon analysis, turn out to be 
too large and too far removed from the empty set to ever 
appear in the stepwise proliferation of sets that R 
generates. This includes the two “sets” Ran R and ∈ in 
the intended model. Moreover, Gödel's Second 
Incompleteness Theorem ([10]) in effect states that no 
theorem of ZFC can assert the consistency of ZFC. Since 
the Extended Completeness Theorem of first order logic 
holds that a theory is consistent if and only if it has a 
model, it follows that there can be no theorem of ZFC 



asserting a model for ZFC. ZFC provably cannot produce 
a model for itself. 
 
A third problem with a metaphysics based on ZFC and its 
intended model is extensionality. A representation is 
extensional if the truth value of an expression relating its 
compositional structure is unaltered by substituting 
components for other components having the same 
reference, and is intensional if otherwise. When sets are 
used to characterise formed matter, they become 
intensional representations of the world. For example, if 
objects are understood as sets of properties, then sets 
characterise matter through the properties it contains. The 
state (object) depicted in Figure 2 might therefore be 
conceptualised as  

S1 = {field, sky, foliage, helicopter, truck1, 
container1, truck2, container2, soccer_goals}. 

The level of detail can be increased to obtain 
S2 = {field, sky, {trees, green}, {main_rotor, 
tail_rotor, fuselage}, truck1, container1, truck2, 
container2, soccer_goals} 

with foliage = {trees, green} and helicopter = 
{main_rotor, tail_rotor, fuselage}, and by the Axiom of 
Extensionality, S1 = S2. But the very same state of the 
world might equally be conceptualised as, 

S3 = {field, sky, {trees, green}, main_rotor, tail_rotor, 
fuselage, truck1, container1, truck2, container2, 
soccer_goals} 

and the Axiom of Extensionality ensures S1 ≠ S3. So in 
this context, ZFC provides an intensional account of the 
world by referring to the same thing in non-identical 
ways. 

helicopter

sky

foliage

soccer_goals container2 container1

truck1truck2
field

helicopter

sky

foliage

soccer_goals container2 container1

truck1truck2
field  

Figure 2. Helicopter moving containers at location s at 
time t. 

Aristotle grounded his understanding in individual 
objects. The properties or forms he observed therefore 
needed to be anchored to objects and so affected his 
concept of object identity. But the emergence of the idea 
of a relation over the last two hundred years, allows the 
properties (and relations) associated with an object to be 
linguistically separated from the identity of that object. 
Rather than conceive of the world through objects as set 
theoretic complexes like {tree, green}, we can entertain 
atomic formulae like green(tree), in which the object tree 
has the property green. Moreover, if we choose to 
embrace an extensional view of objects, then we might 
replace green(tree) with the molecular formula green(r1) 
& tree(r1), in which r1 is a label that references an element 

of an extensional set theory. Stanislaw Leśniewski 
pioneered an extensional set theory in 1916 and in the 
1930s, Goodman, Leonard, Quine and later Lewis, 
subsequently advocated Harvard extensional set theory 
under the title of nominalism. 
 
2.3 Processes 
 
Aristotle identified the world as a world of objects and 
tried to account for change in objects. Aristotle's solution 
to the problem of changing objects was to insist that such 
objects have at least two forms, one form that alters 
during the change, and another form that remains 
constant. The transient form is responsible for there being 
a change, while the permanent form is responsible for that 
change being a change in the one thing. But object 
change is a technically cumbersome mechanism, for it 
allows the same thing to differ, and this fosters ambiguity. 
The extensional Leibniz's law (x = y) ⇔ (Q(x) ⇔ Q(y)) 
in general fails for any property or quality Q if = is object 
identity, because the x object may have shed its accidental 
Q-ness before that same object was referred to as the y 
object. Abelson et.al. ([11] p. 178 and p. 290) notes 
similar difficulties with the assignment construct in 
Computer Science. 
 
The alternative is to insist that changed things are 
different things, thereby safeguarding Leibniz's law. 
Heraclitus is famed for proposing this idea around 480 
B.C., and drawing the conclusion that one can never cross 
the same river twice. The elements of this ontology are 
processes, as they are temporally individuated, while also 
admitting sums of temporally individuated processes as 
processes. Aristotle identifies the world as a world of 
objects and tries to account for change in objects. In 
contrast, the process philosopher (e.g. [12]) identifies the 
world as a world of processes and tries to locate 
persistence among the constant change. The metaphysical 
tier of Figure 1 is about being able to describe what 
things are where, when. This can be achieved through an 
extensional concept of processes, where a process is any 
spatio-temporal fragment of the universe. 
 
2.4 Language 
 
For any subject s and predicate P, Frege’s 1892 ([13]) 
inclination was to represent the sentence s is a P by 
the formal expression P(s). Under naïve realism, the 
content of P(s) is in turn the claim that the interpreted 
referent A(s) of subject s has the interpreted property 
A(s) of predicate P. This approach works satisfactorily 
for the sentence HMAS Adelaide is a ship as the 
content of the sentence ship(HMAS_Adelaide) is the 
claim that the object A(HMAS_Adelaide) referred to by 
HMAS_Adelaide has the property A(ship) referred to by 
ship. Expressed set theoretically, the predicate ship 
refers to the set of all things A(ship) that we label as 
ships, and for object A(HMAS_Adelaide) we have, 
A(HMAS_Adelaide) ∈ A(ship).  
 



The matter complicates, however, when we consider the 
sentence HMAS Weirerstrass is a ship as there is 
no object A(HMAS_Weirerstrass) to be referred to by 
HMAS_Weirerstrass. Russell’s 1905 ([14]) solution 
was to suggest that the term HMAS_Weirerstrass is not 
a name, but a denoting phrase, and so the claim HMAS 
Weirerstrass is a ship is really asserting that: (a) 
there is something having the property of being HMAS 
Weirerstrass; and (b) that thing also has the property of 
being a ship. Consequently, on Russell’s analysis, the 
correct formal representation is ∃x 
(HMAS_Weirerstrass(x) & ship(x)). When 
confronted with any sentence of the form s is a P, one 
will not necessarily know whether or not the subject s 
refers to anything, and so as a precaution, one should 
always formally represent all such sentences by ∃x 
(s(x) & P(x)). 
 
Quine ([15]) used this style of analysis as a basis for 
ontological commitment. One could determine another’s 
ontology by attending to the subjects they asserted in 
sentences. To exist is to be the value of an existentially 
quantified variable in a true sentence. This raises an 
interesting issue when the predicate in question is 
existence, however. The true sentences  

HMAS Adelaide exists (1) 
HMAS Weirerstrass does not exist (2) 

would be formally represented by  
∃x (HMAS_Adelaide(x) & exist(x)) 

∃x (HMAS_Weirerstrass(x) & ¬ exist(x)) 
with a corollary of the second formal expression being 

∃x (¬ exist(x)). 
On the face of it, this is asserting the existence of 
something that doesn’t exist! To prevent this, it has 
become customary to prohibit all usage of an exist 
predicate, and as a special case, to instead formally 
represent the two sentences (1) and (2) by  

∃x (HMAS_Adelaide(x)) 
¬ (∃x (HMAS_Weirerstrass(x)). 

 
A presumption in the aforementioned progression from 
Frege to Russell to Quine, is that asserting s is a P 
entails asserting s is. In this paper, that presumption is 
challenged. Greater utility is to be had if we separate 
content from ontological commitment. If told s is a P, 
then I should be able to believe s is a P without also 
having to believe s is. The existence of s is a separate 
issue. On Quine’s account the sentence Superman 
wears a cape (3) is false because it is formalised as  

∃x (Superman(x) & ∃y (wears(x, y)) 
and there is no x satisfying Superman(x). On the 
author’s account, sentence (3) is true because our 
meaning of Superman involves Superman wearing a 
cape, irrespective of whether Superman exists. Ignoring 
the existence of Superman allows us to truthfully state 

wears(Superman, cape), 
while considering the existence of Superman allows us to 
truthfully state 

¬ exist(Superman) & 
wears(Superman, cape). 

Separating content and ontological commitment, allows 
for reasoning about fictitious entities. Practically, this is a 
necessary requirement, as it is sometimes necessary to 

reason about alleged entities whose existence has not 
been established. For example, HMAS_Adelaide @ 
200606131400Z @ Celtic_Sea may or may not have 
a referent, depending on where the ship actually is at the 
nominated time. Formally handling this requires use of an 
exist predicate whose meaning is not determined by 
direct reference in the way that the existential quantifier ∃ 
is defined. Section 3 defines the exist predicate by 
defining a mathematical (formal) theory of existence. The 
mathematical theory of existence, subsequently denoted 
E, does not tell us what exists. It instead indicates what is 
meant by existence. 

3 Mathematics of Existence 
 
Section 2 promoted an existential process metaphysics 
defined through an exist predicate, where a process is 
any fragment of the spatio-temporal universe. To refine 
the concept of fragment, an initial formal theory of 
fragmentation is proposed. The formal theory is a 
weakening of the ZFC axioms noted in section 2.2. A first 
order framework is utilised with language {≡, ≤} and with 
the domain of discourse restricted to processes. 
Fragmentation is expressed through ≤. The symbols x ≤ y 
means that process x is a fragment of process y. Identity 
is expressed by ≡. x ≡ y means that process x is identical 
to process y.  
 
The Identity Axiom is an adaptation of the Extensionality 
Axiom from ZFC. It establishes process extensionality by 
making processes identical on account of their process 
fragments. 
Identity Axiom 
 ∀x ∀y (x ≡ y ⇔ ∀z (z ≤ x ⇔ z ≤ y)). 
In Figure 2 if helicopter_at_s_t is fully identified by the 
three relations main_rotor_at_s_t ≤ helicopter_at_s_t, 
tail_rotor_at_s_t ≤ helicopter_at_s_t, fuselage_at_s_t ≤ 
helicopter_at_s_t, and a label CH53_at_s_t is fully 
identified by the three relations main_rotor_at_s_t ≤ 
CH53_at_s_t, tail_rotor_at_s_t ≤ CH53_at_s_t, 
fuselage_at_s_t ≤ CH53_at_s_t, then helicopter_at_s_t 
and CH53_at_s_t are identical fragments of the world, id 
est, helicopter_at_s_t ≡ CH53_at_s_t, because each 
fragment of helicopter_at_s_t is a fragment of 
CH53_at_s_t and vice versa. 
 
Fragments are likewise defined on the basis of constituent 
fragments. 
Fragmentation Axiom 
 ∀x ∀y (x ≤ y ⇔ ∀z (z ≤ x ⇒ z ≤ y)). 
 
So x is a fragment of y if and only if every fragment of x 
is also a fragment of y. Therefore main_rotor_at_s_t ≤ 
helicopter_at_s_t is the case because for each unlabelled z 
≤ main_rotor_at_s_t in Figure 2, it is also the case that z ≤ 
helicopter_at_s_t. The Identity Axiom and Fragmentation 
Axiom are sufficient to establish ≤ as a partial ordering. 
 
A process is any fragment of the spatio-temporal 
universe. The third axiom specifies a greatest process 



with respect to fragmentation. That process is the 
universe. 
Universe Axiom 
 ∃x ∀y (y ≤ x). 
As the notion of process is intended to be comprehensive, 
the universe should itself also be a process. Under the 
Universe Axiom, it is. With the way the intuitive notion 
of process is framed, processes must be related to the 
universe through fragmentation. Once again, under the 
Universe Axiom, they are. The informal conception of 
process speaks of the universe, implying that the universe 
is unique. This is also provably the case. 
 
Processes can be identified by both uniting and 
separating other processes. In the previous example, an 
analyst might take helicopter_at_s_t to be the unity of 
main_rotor_at_s_t, tail_rotor_at_s_t and fuselage_at_s_t. 
The Join Axiom facilitates this expressivity. For any two 
processes x and y, the Join Axiom identifies the join 
process z as the smallest fragment that includes both x 
and y. 
Join Axiom 
 ∀x ∀y ∃z (x ≤ z & y ≤ z &  

∀u ((x ≤ u & y ≤ u) ⇒ z ≤ u)). 
It is a simple matter to prove the uniqueness of join 
processes and so for any two processes x and y, to define 
x + y as the join of x and y. 
Definition (join) 
 z ≡ x + y =df (x ≤ z & y ≤ z &  

∀u ((x ≤ u & y ≤ u) ⇒ z ≤ u)). 
 
Equally, given any two processes x and y, x can be 
separated into two processes by using y as a separator. In 
this way x can separate y into two fragments, one 
consisting of those fragments that are shared by both x 
and y, and the other containing all those remaining 
fragments in x that are not in both x and y. The first is 
called the meet process. The second is called the 
difference process. 
 
The Meet Axiom defines meet processes. For any two 
processes x and y, the Meet Axiom identifies the meet 
process z as the largest fragment contained by both x and 
y.  
Meet Axiom 
 ∀x ∀y ∃z (z ≤ x & z ≤ y &  

∀u ((u ≤ x & u ≤ y) ⇒ u ≤ z)). 
On the basis of uniqueness, for any two processes x and 
y, the meet of x and y is denoted by x • y. 
Definition 
 z ≡ x • y =df (z ≤ x & z ≤ y &  

∀u ((u ≤ x & u ≤ y) ⇒ u ≤ z)). 
The Meet Axiom does not express how meets interact 
with joins, however. The following Distribution Axiom 
secures that outcome. 
Distribution Axiom 
 ∀x ∀y ∀z (x • (y + z)) ≤ (x • y) + (x • z)). 
 
The meet of x and y is the largest fragment contained by 
both x and y. The difference of x with y consists of the 
remainder of x when the meet is removed. The difference 

is therefore specified by two constraints. The first 
stipulates that the join of the two separation products 
returns the original process. This ensures the remainder of 
x is contained in the difference as required. However, 
with this sole constraint the difference may also contain 
additional fragments of the meet. So to prevent the 
difference from becoming too large, the join of any 
fragment of both separation products with any other 
process must yield that other process. Thus, if there were 
fragments common to both separation products, they 
would be inconsequential. 
Difference Axiom 
 ∀x ∀y ∃z (x ≡ z + (x • y) &  

∀u ((u ≤ z & u ≤ (x • y)) ⇒ ∀v (v ≡ u + v))). 
The axiom ensures the uniqueness of differences and so 
gives rise to the definition of a difference process. 
Definition (difference) 
 z ≡ x - y =df (x ≡ z + (x • y) &  

∀u ((u ≤ z & u ≤ (x • y)) ⇒ ∀v (v ≡ u + v))). 
An important property emerging from the current axioms 
is the existence of complementary processes formed for 
any process x by Ω - x. As differences are unique, it 
follows that complementary processes are necessarily 
unique. The complement of x is denoted by -x. 
Definition (complement) 
 y ≡ -x =df y ≡ Ω - x. 
A related consideration is the process Ω - Ω, or 
equivalently, -Ω. As differences are unique, Ω - Ω is 
unique. This process is denoted by ⊥. Since the universal 
process is casually called everything, it is natural to call 
the complement of everything, nothing. ⊥ serves as the 
lower bound for processes. 
Definition (nothing) 
 x ≡ ⊥ =df x ≡ Ω - Ω. 
 
An important theorem resulting from these axioms is that 
<Ω; +, •, -, ⊥, Ω> is a Boolean algebra. But the 
foundation for that algebra remains unresolved. Again the 
ancient Greeks come to the fore, with Democritus 
asserting that everything is composed of indivisible 
atoms, and Anaxagoras insisting that everything is 
infinitely divisible. The Democritus concept of atom 
survives in modern algebra. The following definition 
defines the concept of atom for the evolving theory. 
Definition 
 atomic(x) =df !(⊥ ≡ x) &  

∀y (y ≤ x ⇒ (y ≡ x ∨ y ≡ ⊥)). 
 
Under this definition, a fragment of the world is an 
atomic fragment if it is not nothing and its only fragments 
are nothing and itself. The Foundation Axiom instead 
favours Anaxagoras by endorsing an atomless Boolean 
algebra. 
Foundation Axiom (Anaxagoras) 
 ¬ (∃x (atomic(x))). 
 
The axioms of the formal theory E have now been 
specified. The axioms have effectively been defined in 
terms of the fragmentation relation ≤, given the Identity 
Axiom. But as a theory of existence, it has presented no 



commentary on existence per se. The following definition 
remedies that by defining an exist predicate. 
Definition 
 exist(x) =df ¬ (x ≡ ⊥). 
A resulting theorem ∀x (exist(x) ⇔ ¬ (x ≤ ⊥)) shows 
that the existence relation exist can be equivalently 
expressed in terms of the fragmentation relation ≤, and 
this reflects the way exist was defined. Conversely, 
another theorem ∀x ∀y (x ≤ y ⇔ ¬ exist(x • -y)) shows 
that the fragmentation relation ≤ can be equivalently 
expressed in terms of the existence predicate exist. The 
mathematical theory of fragmentation is therefore 
equivalent to a mathematical theory of existence. The 
mathematical theory of existence also fulfils the 
philosophical intent of section 2. Rather than define 
existence in the manner of ∃, through reference to things 
metatheoretically claimed to exist in the world, existence 
is instead defined here through a formal theory. The 
existential, foundationless formal theory does not identify 
what exists in the world. It instead defines what is meant 
by existence, so that appropriate conclusions can 
subsequently be drawn from beliefs about what exists in 
the world. 
 
As the axioms and definitions of this section, E is a theory 
expressed in a first order metaphysics language M, and 
so the conventional semantics of first order languages 
applies to E ([6]). Thus in the usual way one can define E 
J τ if and only if τ is a logical consequence of E. Three 
important metatheorems of E are: E is satisfiable, id est 
there is no τ such that E J τ and E J ¬ τ; E is complete, id 
est for all τ, E J τ or E J ¬ τ; and E is recursive, and so E J 
τ can be computed for all τ (given Church’s Thesis [16]). 

4 Computation of Existence 
 
The final metatheorem of section 3 indicates that a 
computer can reason in accordance with the mathematical 
theory of existence E in language M. The challenge of 
section 4 is to determine how to do that. The value of the 
theory of existence is that it defines what is meant by 
existence, so that appropriate conclusions can 
subsequently be drawn from beliefs about what exists in 
the world. In general there will be some domain theory D 
in the language M that expresses what is believed to exist 
in the world. By combining theory D with theory E, 
meaning is attached to the expressions of D so that the 
intended semantic consequences of D follow. The 
intended semantic consequences of D are {σ | (D ∪ E) J 
σ}. Importantly, as E is provably satisfiable and 
complete, uncertainties in (D ∪ E) must derive from 
uncertainties about the domain knowledge D, not 
uncertainties about the meaning of the terms used in E. 
The semantic consequence relation can be formally 
defined as J. 
Metadefinition (semantic consequence) 
 D J σ =df (D ∪ E) J σ. 
 

Two things are required for a machine to compute 
semantic consequences from domain knowledge. 
• A computational language C in which to express 

machine readable domain knowledge D. 
Semantically, D should correspond to some domain 
knowledge D when expressed in language M. 

• A deductive consequence relation H that can compute 
the deductive consequences {δ | D H δ} of D. 
Semantically, the deductive consequences should 
correspond to the semantic consequences {σ | D J σ} 
of domain knowledge D corresponding to D. 

 
4.1 Computational Language 
 
A computational language C has been implemented with a 
well defined translation function Tr : C  → M. It has 
nothing and universe to express the constant symbols for ⊥ 
and Ω respectively; allows identifiers and variables (with 
restrictions) as terms; uses (- ξ), (ξ * ψ) and (ξ + ψ) to 
express the terms (- x), (x • y) and (x + y) respectively, 
where ξ and ψ express x and y respectively; employs 
atomic formulae exists(ξ), fragment(ξ, ψ) and identical(ξ, ψ) for 
exist(x), x ≤ y and x ≡ y respectively, where ξ and ψ 
express x and y respectively; admits literals α and (~ α) 
for atomic formulae α, where (~ α) denotes the negation 
of α; allows conditionals (λ iF β) for literal λ and either 
literal β or literal conjunction β = (λ1 & … & λm); and allows 
conjunctions (β1 & … & βk) for literals or conditionals β1, … 
βk. A believe predicate is employed to enter expressions 
from language C into a knowledge base as domain 
knowledge D.  
 
To illustrate some domain knowledge D, the processes of 
interest at region s and time t in Figure 2 can be 
segregated into distinct transitory and stationary 
fragments which at time t happen to be a fragment of 
region s. In formal language M, this can be expressed by 
transitory • stationary ≡ ⊥ & (transitory + stationary) • t ≤ 
s. This can be entered into the machine in language C as 

believe((~ exists(transitory * stationary))  
& fragment((transitory + stationary) * t, s)). 

The transitory fragments comprise the mutually distinct 
helicopter, trucks and containers at time t, which is 
expressed to the machine through 

believe(identical(transitory * t, (helicopter + trucks + containers) * t) & (~ 
exists(trucks * containers)) & (~ exists(helicopter * (trucks + containers)))). 

There are two distinct trucks at time t, truck1 and truck2,  
believe(identical(trucks * t, (truck1 + truck2) * t) & (~ exists(truck1 * 
truck2)) & exists(truck1 * t) & exists(truck2 * t)). 

with the two distinct containers reported analogously. The 
helicopter has been conceptualised in terms of its distinct 
main rotor, tail rotor and fuselage fragments. This is 
expressed to the machine by 

believe(identical(helicopter, main_rotor + tail_rotor + fuselage) & (~ 
exists(main_rotor * (tail_rotor + fuselage))) & (~ exists(tail_rotor * 
fuselage)) & exists(main_rotor * t) & exists(tail_rotor * t) & exists(fuselage * 
t)). 

The four mutually distinct stationary fragments field, sky, 
foliage and soccer_goals are similarly expressed in C. 
 



4.2 Deductive Consequences 
 
When domain knowledge D in the language of C is 
presented to the knowledge base, an existential normal 
form function ∃NF : C → P(N) (not presented here) 
converts each δ ∈ D to a set of normal form expressions 
∃NF(δ) ⊂ N, for existential normal form language N ⊂ 
C. and powerset P. δ ∈ D and ∃NF(δ) ⊂ N are 
semantically equivalent with respect to E. 
Metatheorem (∃NF preserves the semantics of E) 

 E J (∧Tr(δ)  ⇔  ∧{∧Tr(ν) | ν ∈ ∃NF(δ)})), where 
∧{ ϕ1, …, ϕk} = (ϕ1 & … & ϕk), for translation function 
Tr : C → (M ∪ Name ∪ Variable) 
Entering believe(δ) for δ ∈ D results in ∃NF(δ) being stored 
in the knowledge base. For example, believing the 
identity statement for the helicopter in section 4.1 
produces, 

stored exists((fuselage * t)) into the KB 
stored exists((main_rotor * t)) into the KB 
stored exists((t * tail_rotor)) into the KB 
stored ~exists((fuselage * -helicopter)) into the KB 
stored ~exists((fuselage * main_rotor)) into the KB 
stored ~exists((fuselage * tail_rotor)) into the KB 
stored ~exists((helicopter * -fuselage * -main_rotor * -tail_rotor)) into the KB 
stored ~exists((main_rotor * -helicopter)) into the KB 
stored ~exists((main_rotor * tail_rotor)) into the KB 
stored ~exists((tail_rotor * -helicopter)) into the KB 

 
Deduction from D is defined in terms of deduction from 
the existential normal form translation ∃NF[D] = 
∪{∃NF(δ) | δ ∈ D} of the expressions in D.  
Metadefinition (deductive consequence) 
 D H σ =df ∃NF[D] H ν for all ν ∈ ∃NF(σ). 
 
To ensure that the normal form deductive consequences 
{ν | ∃NF[D] H ν} correspond to the semantic 
consequences {σ | D J σ} for D = {Tr(ν) | ν ∈ ∃NF[D]}, 
the normal form deductive consequence relation H is 
defined with reference to J. Firstly, the two axioms for the 
proof theory of H are (~ exists(nothing)) and exists(universe) as N 
language counterparts to ¬ exist(⊥) and exist(Ω) (with 
the latter preventing the trivial model of E in which ⊥ ≡ 
Ω) in the language of E. The proof theory couples these 
two axioms with 6 rules of inference. Four of these rules 
of inference correspond to the following four provable 
metatheorems of E which the author has named. 
Generalised Existential Modus Ponens (G∃MP) 
 {¬ (exist(ξ • ψ)), exist(ξ • η)} J exist(- ψ • η). 
Generalised Existential Modus Tollens (G∃MT) 
 {¬ (exist(ξ • ψ)), ¬ (exist(-ξ • η))} J ¬ (exist(ψ • η)). 
Generalised Existential Disjunctive Syllogism (G∃DS) 
 {exist((ξ • ψ) + η), ¬ (exist(ξ))} J exist(η)). 
Generalised Existential DeMorgan’s Law (G∃DL) 
 {¬ (exist((ξ1 + … + ξn))} J ¬ (exist(ξi)). 
The other two rules of inference support inference with 
conditionals. 
Conditional Assertion (CA) 
 {(β if true)} J β. 

Conditional Simple Constructive Dilemma (CSCD) 
 {(β1 if (β2 & β3)), β2} J (β1 if β3). 
 
Normal form deductive inference is then defined as 
follows. 
Metadefinition (normal form deductive consequence) 
 ∃NF[D] H ν =df there exists a proof sequence < ν1, …, 
νn> such that: ν1 = (~ ν); νn = exists(nothing); and for all νk (1 
< k < n) either νk = (~ exists(nothing)) or νk = exists(universe) or νk 
∈ ∃NF[D] or there exists i, j < k and { ϕi, ϕj} J ϕk by 
G∃MP, G∃MT, G∃DS, G∃DL, CA or CSCD, where 
Tr(νm) = ϕm ∈ D is the counterpart to νm ∈ ∃NF[D]. 
 
The author has written a theorem prover to compute D H 
σ, with the option of displaying a proof. To illustrate, 
Figure 3 shows the output generated by the theorem 
prover in response to the query ask_proof(fragment(main_rotor * t, 
s)) with the section 4.1 domain knowledge D of Figure 2. 

To prove  
       fragment(main_rotor*t,s) 
it is necessary to prove the following normal form theorems 
       ~exists((main_rotor * t * -s)) 
 
The number of theorems for the proof is 1. 
 
Theorem: ~exists((main_rotor * t * -s)) 
Proof: 
Hypothesise denial of the initial proposition 
       ~exists((main_rotor * t * -s)) 
deduce exists((main_rotor * t * -s)) 
       by HYP 
deduce ~exists((t * transitory * -s)) 
       by KB 
deduce ~exists((helicopter * t * -transitory)) 
       by KB 
deduce ~exists((main_rotor * -helicopter)) 
       by KB 
deduce ~exists((main_rotor * t * -transitory)) 
       from ~exists((main_rotor * -helicopter)) 
       with ~exists((helicopter * t * -transitory)) 
       by GEMT 
deduce ~exists((main_rotor * t * -s)) 
       from ~exists((t * transitory * -s)) 
       with ~exists((main_rotor * t * -transitory)) 
       by GEMT 
deduce exists(nothing) 
       from ~exists((main_rotor * t * -s)) 
       with exists((main_rotor * t * -s)) 
       by GEMP 
As this is a contradiction, by reductio ad absurdum the theorem follows. 
Q.E.D. 

Figure 3. Sample generated proof. 

5 Metaphysical Category 
 
The theory of existence E is the primary metaphysical 
formal theory. To complete a computational metaphysics 
of processes as spatio-temporal fragments of the universe, 
space and time must augment E. A metaphysical category 
ascending from E can be expressed in category theory 



(e.g. [17]) by forming various specifications SF = <σF, F>, 
each with a formal theory (set of axioms) F and its 
associated formal language signature σF (composed of 
sorts and operators on them), and by defining morphisms 
between these specifications. Figure 4 illustrates the role 
of the limit specification SE, which specifies processes. 
Time can be specified by colimit ST composed from a 
theory of temporal ordering T< (e.g. [18]) and a theory of 
temporal distance TD, as refinements of an ontological 
theory of time TO in which times conform to a sub-
algebra TO of Boolean algebra E through the 
identification of times as equivalence classes of 
concurrent processes. Space can be specified by SS 
composed from a theory of spatial orientation SR; a 
theory of spatial distance SD; and a theory of spatial 
connection SC; as refinements of an ontological theory of 
space SO in which regions conform to a sub-algebra SO 
of Boolean algebra E through the identification of 
equivalence classes of co-located processes, (e.g. the 
region connection calculus can be expressed as a Boolean 
algebra SO and a collection of connection axioms SC 
([19])). ST and SS then combine to form the metaphysical 
specification SM, which in turn transitively underpins the 
specifications associated with the other tiers in Figure 1. 
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Figure 4. Hierarchy of semantic theories. 

6 Conclusions 
 
The choice of symbols and their meaning is a 
fundamental issue for higher-level data fusion. The paper 
has suggested that a hierarchy of formal theories is a 
promising approach provided the underlying philosophy, 
mathematics and computer science is carefully 
considered, and it has demonstrated that approach for a 
theory of existence. 
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